Generative AI & Predictive Modeling Icon

Cambridge Healthtech Instituteの第2回年次

Generative AI & Predictive Modeling
生成AIと予測モデリング

Accelerating Drug Discovery by Improving Speed, Scale, and Accuracy
スピード、スケール、精度の向上による創薬の加速

2025年4月14日PDT(米国太平洋標準時)

 

現在、創薬向けに様々な人工知能(AI)や機械学習(ML)ツールの台頭が見られ、生成AI(GenAI)はゲームチェンジャーになると考えられます。GenAIモデルやアルゴリズムは、医薬品ターゲットの同定や追求方法、望ましい薬物様な特性を持つ新規のリード候補の設計や最適化の方法、複雑な生物学と広大な化学空間の検証方法を変革すると期待されています。Cambridge Healthtech Instituteによる「生成AIと予測モデリング」シンポジウムでは、専門家を集めてGenAIの新興のアプリケーションについて議論し、その後に開催される「早期創薬向けAI/ML」会議の良い入門となります。

4月14日(月)

12:00 pmPre-Conference Symposium Registration

APPLICATIONS TO INNOVATIONS
イノベーションへのアプリケーション

1:00 pmWelcome Remarks
1:10 pm

Chairperson's Remarks

Tudor Oprea, MD, PhD, CEO, Expert Systems, Inc.

1:15 pm

Using Generative AI to Design Small Molecules That Can Engage Multiple Targets

Rayees Rahman, PhD, Co-Founder & CEO, Harmonic Discovery

Unlike conventional methods that focus on single-target selectivity, generative AI models leverage machine learning and deep learning algorithms to explore vast chemical spaces, optimizing molecules for polypharmacology. These models can integrate multi-target profiles, assessing potential off-target effects, efficacy, and safety considerations, ultimately facilitating the creation of compounds with desired therapeutic profiles. This study explores generative modeling for multi-target engagement and highlights its promise to address complex diseases through targeted polypharmacology.

1:45 pm

Impact of Complementary Generative AI Methods and Absolute Binding Free Energy Applied to Drug Discovery

Romelia Salomon, PhD, Senior Project Leader, Drug Discovery, SandboxAQ

Discover how innovative generative AI and molecular simulation methods are revolutionizing drug discovery. This presentation will explore cutting-edge strategies for hit finding and lead optimization targeting unmet medical needs. Key highlights include AI-based ligand design, active learning absolute free energy perturbation (AQFEP) virtual screening, the Alchemical Transfer Method (ATM) for binding free energy estimation, and IDOLpro—a generative AI solution that integrates deep diffusion with multi-objective optimization.

2:15 pm

Generative AI for Drug Design

Henry van den Bedem, PhD, Senior Vice President, Machine Learning Research & Cheminformatics, Atomwise Inc.

2:45 pmSponsored Presentation (Opportunity Available)

3:15 pmNetworking Refreshment Break

3:30 pm

Non-Human Intelligence in Drug Discovery

Tudor Oprea, MD, PhD, CEO, Expert Systems, Inc.

This talk summarizes our experience of developing non-human intelligent technologies for drug discovery. We created multiple temporally-validated machine learning (ML) models, and some LLM (large language model) agents to integrate and coordinate drug discovery activities. This platform includes 1) target-phenotype ML models focusing on oncology and neurodegeneration; 2) thousands of multi-task target-based and property-based ML models using proprietary data and fingerprints; 3) multiple LLM agents serving as research assistants for specific drug discovery tasks.

4:00 pm

What Got Us Here Won’t Get Us There: The Future of Drug Discovery with Generative AI

Sanaz Cordes, MD, Chief Advisor, Healthcare & Life Sciences, World Wide Technology Inc.

This is an engaging and insightful talk on the transformative power of generative AI (GenAI) in drug discovery. It will explore how GenAI is reshaping the drug discovery process, driving efficiency, and unlocking new possibilities for innovation.

4:30 pm PANEL DISCUSSION:

Session Speakers Discuss Current Gaps in Adopting GenAI for Drug Discovery

PANEL MODERATOR:

Tudor Oprea, MD, PhD, CEO, Expert Systems, Inc.

5:15 pmClose of Symposium

5:30 pmDinner Short Course Registration

6:00 pmDinner Short Course*

SC3: Fundamentals of Generative AI for Drug Discovery

*Premium Pricing or separate registration required. See Short Courses page for details.

*不測の事態により、事前の予告なしにプログラムが変更される場合があります。

Choose your language
Traditional Chinese
Simplified Chinese
Korean
English

会議の詳細はこちらをご参照ください